
A Cache Conflict Analysis Tool

Vincent Weaver, Cornell University
CASC, Martin Schulz

Lawrence Livermore National Laboratory
11 August 2005

Abstract

The Cache Conflict Analysis Tool takes memory access traces from
an instrumented program and runs them through a cache simulator,
tracking which data structures conflict with each other. We will use
the results of the tool to perform automatic cache conscious data
placement, resulting in increased program performance.

Background

•The cache location of a data structure is dependent on its loca-
tion in main memory.

•The layout of data (both static and dynamic) in main memory
can dramatically affect cache performance due to conflicts, and
can adversely affect performance of an application.

•Compilers typically do not take cache conflict behavior into ac-
count when creating an executable, nor does the memory subsys-
tem or operating system at time of execution.
•By analyzing cache behavior with this tool, hopefully more opti-
mal data placement can be achieved.

Below is an example of how in a direct mapped 4k cache with a 32 byte blocksize, every 4096th byte in main memory

will map to the same area of cache. So if you have two data structures in use at the same time that are 4096 bytes

apart, both will not fit in the cache at the same time and performance will be adversely affected.

Pseudo-code of a Conflict Miss

Allocate A[512] (allocated at offset 0)
Allocate B[512] (allocated at offset 4096)

Loop i=0..N
Loop j=0..511

A[j]=A[j]+B[j]

Without conflicts, A and B should be in the
cache after the first access. Due to conflicts,
each access causes a miss.

Diagram of a Conflict Miss

Main Memory
0
1
2
3

4096
4097
4098
4099

Cache
0
1
2
3

Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
QQs

�
�
�
�
�
�
�
��7

�
�
�
�
�
�
�
��7

�
�
�
�
�
�
�
��7

�
�
�
�
�
�
�
��7

Results

Below are some results from running different benchmarks through
the tool, with a simulated cache configuration similar to that of a
Pentium 4 (8K 4-way 64byte L1, 512K 8-way 64byte L2)

equake from the spec2k benchmarks

 0
 200000
 400000
 600000
 800000
 1e+06
 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06
 2e+06

140108
1808

20
Unknown

140108
1808

20
Unknown

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06

Conflict by Size L1

Size coming in

Size going out

Figure 1: Conflicts by size in the L1
Cache. The biggest peak is that of 24-
byte allocations (corresponding to an ar-
ray of 3 doubles) kicking each other out
of the cache.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 5 10 15 20 25 30

A
cc

es
se

s

Offset

Conflict Caused by Size 32

accesses
l1 misses
l2 misses

Figure 2: Accesses, both total and
those causing misses, for offsets in the 24-
byte allocations (plus 8 bytes of padding
added by the system’s malloc() routine).

smg2k from the ASCI Purple Benchmarks

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06

1926056864008216008100808470481536867289682001168464483216Unknown

1926056864008216008100808470481536867289682001168464483216Unknown

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06

Conflict by Size L1

Size coming in

Size going out

Figure 3: Conflicts by size in the L1
Cache. The biggest peaks here are from
large allocations (bigger than the cache
size) causing capacity misses.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

A
cc

es
se

s

Offset

Conflict Caused by Size 272

accesses
l1 misses
l2 misses

Figure 4: Accesses, both total and
those causing misses, for offsets in the
272-byte allocations. The large gap of un-
used space in the middle might open op-
portunities for better cache placement.

Implementation

Program of Interest

Instrumented to send:
• Load and Store Addresses
• malloc,calloc,realloc

and free information
• address and size of

current basic block

Instrumented with FIT
(Flexible Instrumentation Toolkit)
which is an atom-like tool

Runs natively on x86/Linux

?

data sent via unix fifo (pipe)

Cache Conflict Analysis Tool

Cache Simulator
L1

ICache

-

L1
DCache

-

L2
Cache

+ L1 ICache simulated using
basic block size / address

+ L1 DCache simulated using
load / store addresses.

+ A list of memory areas
is generated from
malloc and symbol info.

+ Memory is divided into
1k chunks and entered
into a hash table.

+ There is a separate hash
for finding size
specific stats.

memory
hash

-address

-
?

memory area

?

name

address

segment

freed

accesses

misses
size

-

size
hash

-
?

sizes

?

size
number

callsites L1, L2 conflictsL1, L2 misses
+ Conflict and access info is

categorized by
block size.

Memory access info is collected from the pro-
gram on the fly, run through a cache simu-
lator, and various statistics are recorded. Results are presented as HTML with graph-

ics.

Future Work

• Implement automatic cache-conscious data placement:

+ by hand through code organization

+ automatically at runtime via customized memory management

+ using hardware remapping mechanisms (such as IMPULSE)

•Enable instrumentation by atom or valgrind in addition to FIT.
• Instrument more benchmarks.

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

